Microneedles (MNs) - A versatile transdermal drug delivery system: Types, Fabrication Methodology, Release Mechanism, Evaluation Parameters, Biological Application and Clinical Case Studies

Microneedles (MNs) - A versatile transdermal drug delivery system



  • Jayendrakumar Patel Ganpat University https://orcid.org/0000-0001-5284-1053
  • Shalin Parikh Pyrrhic Pharma Private Limited https://orcid.org/0000-0003-3369-753X
  • Shwetaben Patel Pyrrhic Pharma Private Limited, Vijapur, Gujarat, India – 382870.
  • Ronak Patel Pyrrhic Pharma Private Limited, Vijapur, Gujarat, India – 382870.
  • Payalben Patel Pyrrhic Pharma Private Limited, Vijapur, Gujarat, India – 382870.
  • Bhavesh Bhavsar KriGen Pharmaceuticals LLC., Lillington, NC, USA 27546. https://orcid.org/0000-0003-4029-5950


Transdermal, Drug Delivery, Microneedles, solid, hydrogel, hollowed, coated, dissolved, fabrication methodology, biological application, clinical study, evaluation parameters


Because of the limitations of the oral drug delivery system, as well as the discomfort associated with the usage of needles in the case of injections, drug delivery research has shifted significantly toward the transdermal route of administration. Topical creams, gels, and transdermal patches are the most often utilised means of transdermal administration of drugs. Since the stratum corneum layer of the skin acts as a barrier to a drug molecule, the effect of the majority of therapeutic agents is limited. As a result, only a small number of molecules are able to reach the site of action. A new type of delivery method, known as microneedles, is being developed to improve the distribution of drugs through this route while also overcoming the various issues associated with existing formulations. Non-invasive and painless feature of microneedles have making them ideal for self-administration. This review describes various type of microneedles and their design, fabrication methodology, various materials used in fabrication of microneedles, drug release mechanism from the microneedles, evaluation parameters, it’s biological application, update about recent clinical studies and in last, challenges and future perspective of microneedles as drug delivery system.


Metrics Loading ...


Lhernould, M.S.; Deleers, M.; Delchambre, A. Hollow polymer microneedles array resistance and insertion tests. Int. J. Pharm. 2015, 480, 152–157.

Kim, K.S.; Ita, K.; Simon, L. Modelling of dissolving microneedles for transdermal drug delivery: theoretical and experimental aspects. Eur. J. Pharm. Sci. 2015, 68, 137–143.

Danso, M.O.; Berkers, T.; Mieremet, A.; Hausil, F.; Bouwstra, J.A. An ex vivo human skin model for studying skin barrier repair. Exp. Dermatol. 2015, 24, 48–54.

Danso, M.O.; van Drongelen, V.; Mulder, A.; Gooris, G.; van Smeden, J.; El Ghalbzouri, A.; Bouwstra, J.A. Exploring the potentials of nurture: 2nd and 3rd generation explant human skin equivalents. J. Dermatol. Sci. 2015, 77, 102–109.

Andrews, S.N.; Jeong, E.; Prausnitz, M.R. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm. Res. 2013, 30, 1099–1109.

Jepps, O.G.; Dancik, Y.; Anissimov, Y.G.; Roberts, M.S. Modeling the human skin barrier— Towards a better understanding of dermal absorption. Adv. Drug Deliv. Rev. 2013, 65, 152–168.

Flaten, G.E.; Palac, Z.; Engesland, A.; Filipović-Grčić, J.; Vanić, Ž.; Škalko-Basnet, N. In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci. 2015, 75, 10–24.

D. Sharma, Microneedles: an Approach in Transdermal Drug Delivery: a Review

Tucak A, Sirbubalo M, Hindija L, Rahić O, Hadžiabdić J, Muhamedagić K, Čekić A, Vranić E. Microneedles: Characteristics, Materials, Production Methods and Commercial Development. Micromachines. 2020; 11(11):961. https://doi.org/10.3390/mi11110961

M. Gupta, U. Agrawal, S.P. Vyas, Nanocarrier-based topical drug delivery for the treatment of skin diseases, Expert Opin. Drug Deliv., 9 (7) (2012), pp. 783-804

A.C. Williams, B.W. Barry, Penetration enhancers, Adv. Drug Deliv. Rev., 56 (5) (2004), pp. 603-618

P. Bora, L. Kumar, A. Bansal, Microneedle Technology for Advanced Drug Delivery: Evolving Vistas, (2008)

Tejashree Waghule, Gautam Singhvi, Sunil Kumar Dubey, Murali Monohar Pandey, Gaurav Gupta, Mahaveer Singh, Kamal Dua, Microneedles: A smart approach and increasing potential for transdermal drug delivery system, Biomedicine & Pharmacotherapy, Volume 109, January 2019, Pages 1249-1258.

Kevin B Ita, Transdermal Delivery of Drugs with Microneedles - Potential and Challenges, Pharmaceutics 2015, 7, 90-105; doi:10.3390/pharmaceutics7030090

Jacoby, E.; Jarrahian, C.; Hull, H.F.; Zehrung, D. Opportunities and challenges in deliveringinfluenza vaccineby microneedle patch. Vaccine 2015, doi: 10.1016/j.vaccine.2015.03.062.

Chu, L.Y.; Choi, S.O.; Prausnitz, M.R. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. J. Pharm. Sci. 2010, 99, 4228–4238.

Donnelly, R.F.; Moffatt, K.; Alkilani, A.Z.; Vicente-Pérez, E.M.; Barry, J.; McCrudden, M.T.; Woolfson, A.D. Hydrogel-forming microneedle arrays can be effectively inserted in skin by self- application: A pilot study centred on pharmacist intervention and a patient information leaflet. Pharm. Res. 2014, 31, 1989–1999.

Olatunji, O.; Das, D.B.; Garland, M.J.; Belaid, L.; Donnelly, R.F. Influence of array interspacing on the force required for successful microneedle skin penetration: Theoretical and practical approaches. J. Pharm. Sci. 2013, 102, 1209–1221.

Cheung, K.; Han, T.; Das, D.B. Effect of Force of Microneedle Insertion on the Permeability of Insulin in Skin. J. Diabetes Sci. Technol. 2014, 8, 444–452.

Kaur, M.; Ita, K.B.; Popova, I.E.; Parikh, S.J.; Bair, D.A. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur. J. Pharm. Biopharm. 2014, 86, 284–291.

J. Li, M. Zeng, H. Shan, C. Tong, Microneedle patches as drug and vaccine delivery platform, Curr. Med. Chem., 24 (22) (2017), pp. 2413-2422

M.R. Prausnitz, Engineering microneedle patches for vaccination and drug delivery to skin, Annu. Rev. Chem. Biomol. Eng., 8 (2017), pp. 177-200

S.P. Narayanan, S. Raghavan, Solid silicon microneedles for drug delivery applications, Int. J. Adv. Manuf. Technol., 93 (1-4) October) (2017), pp. 407-422

S.P. Narayanan, S. Raghavan, Fabrication and characterization of gold-coated solid silicon microneedles with improved biocompatibility, Int. J. Adv. Manuf. Technol. (2018), pp. 1-7

Q.Y. Li, J.N. Zhang, B.Z. Chen, Q.L. Wang, X.D. Guo, A solid polymer microneedle patch pretreatment enhances the,permeation of drug molecules into the skin, RSC Adv., 7 (25) (2017), pp. 15408-15415.

Donnelly R.F., Raj Singh T.R., Alkilani A.Z., McCrudden M.T.C., O’Neill S., O’Mahony C., Armstrong K., McLoone N., Kole P., Woolfson A.D. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: Potential for enhanced patient safety. Int. J. Pharm. 2013;451:76–91.

Chen B, Wei J, Tay FEH, Wong YT, Iliescu C. Silicon micro needles array biodegradable tips for transdermal drug delivery. DTIP Mems Moems 2007; 1: 25-27

Sheer A, Chauhan M. Ethosomes as vesicular carrier for enhanced transdermal delivery of ketoconazole-formulation and evaluation. IJPI’s J Pharm Cosmetol 2011; 1(3): 1-14.

Khan, H.; Mehta, P.; Msallam, H.; Armitage, D.; Ahmad, Z. Smart microneedle coatings for controlled delivery and biomedical analysis. J. Drug Target 2014, 22, 790–795.

Ma, Y.; Gill, H.S. Coating solid dispersions on microneedles via a molten dip-coating method: development and in vitro evaluation for transdermal delivery of a water-insoluble drug. J. Pharm. Sci. 2014, 103, 3621–3630.

Bendas ER, Tadros MI. Enhanced transdermal delivery of salbutamolsulphate via ethosomes. AAPS PharmSciTech 2007; 8: 1-15.

Kumar AV, Kulkarni PR, Raut RA. Microneedles: promising technique for transdermal drug delivery. Int J Pharm Bio Sci 2011; 2(1): 684-708.

Chen B, Wei J, Tay FEH, Wong YT, Iliescu C. Silicon micro needles array biodegradable tips for transdermal drug delivery. DTIP Mems Moems 2007; 1: 25-27.

Y.C. Kim, J.H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery, Adv. Drug Deliv. Rev., 64 (14) November) (2012), pp. 1547-1568

Jitendra Gupta, Reena Gupta, and Vanshita, Microneedle Technology: An Insight into Recent Advancements and Future Trends in Drug and Vaccine Delivery, ASSAY and Drug Development Technologies. Mar 2021.97-114. http://doi.org/10.1089/adt.2020.1022

Joseph G. Turner, Leah R. White, Pedro Estrela, Hannah S. Leese, Hydrogel-Forming Microneedles: Current Advancements and Future Trends, Macromolecular Bioscience, Volume21, Issue 2, February 2021, 2000307. https://doi.org/10.1002/mabi.202000307

Xie L, Zeng H, Sun J, Qian W: Engineering microneedles for therapy and diagnosis: a survey. Micromachines 2020; 11:1–28.

Ashraf MW, Tayyaba S, Nisar A, et al.: Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions. Cardiovasc Eng 2010;10: 91–108.

Nuxoll, E. BioMEMS in drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 1611–1625.

Nejad HR, Sadeqi A, Kiaee G, Sonkusale S: Low-cost and cleanroom-free fabrication of microneedles. Microsyst Nanoeng 2018; 4:1–7.

Omatsu, T.; Chujo, K.; Miyamoto, K.; Okida, M.; Nakamura, K.; Aoki, N.; Morita, R. Metal microneedle fabrication using twisted light with spin. Opt. Express 2010, 18, 7616–7622.

Ogundele M, Okafor HK (2017) Transdermal drug delivery: Microneedles, their fabrication and current trends in delivery methods. J Pharm Res Int 18:1–14

Park BJ, Choi HJ, Moon SJ, Kim SJ, Bajracharya R, Min JY, Han H-K (2019) Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. Int J Pharm Investig 49:575–585

Economidou SN, Lamprou DA, Douroumis M (2018) 3D printing applications for transdermal drug delivery. Int J Pharm 544:415–424.

Han D, Morde RS, Mariani S, La Mattina AA, Vignali E, Yang C, Barillaro G, Lee H (2020) 4D Printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv Funct Mater 30:1909197

Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED (2019) Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng 5:42

Johnson AR, Procopio AT (2019) Low cost additive manufacturing of microneedle masters. The 3D Print Med 5(1): 2–10

Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ (2018) Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip 18:1223–1230

Jamroz, W.; Szafraniec, J.; Kurek, M.; Jachowicz, R. 3D Printing in Pharmaceutical and Medical Applications—Recent Achievements and Challenges. Pharm. Res. 2018, 35, 176.

Gittard, S.D.; Miller, P.R.; Jin, C.; Martin, T.N.; Boehm, R.D.; Chisholm, B.J.; Stafslien, S.J.; Daniels, J.W.; Cilz, N.; Monteiro-Riviere, N.A.; et al. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles. Jom 2011, 63, 59–68.

El-Sayed, N.; Vaut, L.; Schneider, M. Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur. J. Pharm. Biopharm. 2020, 154, 166–174.

Jung, J.H., Jin, S.G. Microneedle for transdermal drug delivery: current trends and fabrication. J. Pharm. Investig. (2021). https://doi.org/10.1007/s40005-021-00512-4.

Camovi´c, M.; Bišˇcevi´c, A.; Brˇci´c, I.; Borˇcak, K.; Bušatli´c, S.; Cenanovi´c, N.; Dedovi´c, A.; Mulali´c, A.; ´ Osmanli´c, M.; Sirbubalo, M.; et al. Coated 3D printed PLA microneedles as transdermal drug delivery systems. In Proceedings of the CMBEBIH 2019, IFMBE Proceedings, Banja Luka, Bosnia and Herzegovina, 16–18 May 2019; Springer: Cham, Switzerland, 2019; pp. 735–742.

Takada K, Sun H-B, Kawata S (2005) Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting. Appl Phys Lett 86:71122

Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt Lett 200238:301–303

Balmert SC, Carey CD, Falo GD, Sethi SK, Erdos G, Korkmaz E, Falo LD Jr (2020) Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. J Control Release 317:336–346

Park S-H, Yang D-Y, Lee K-S (2009) Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photonics Rev 3:1–11.

Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, Shirvanyants D, Mecham SJ, Luft JC, DeSimone JM (2016) Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS ONE 11:e0162518

Schmidleithner C, Kalaskar DM (2018) Stereolithography. IntechOpen, 1–22.

Dharadhar S, Majumdar A, Dhoble S, Patravale V (2019) Microneedles for transdermal drug delivery: a systematic review. Drug Dev Ind Pharm 45:188–201

Melchels FP, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130

Lu Y, Mantha SN, Crowder CC, Chinchilla S, Shah KN, Yun YH, Wicker RB, Choi J-W (2015) Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication 7:045001

Balashanmugam N, Naveen K, Krishna P, Kumar GCM: Fabrication of polymeric micro needle array by micromachining and micro molding. Int J Eng Innov Tech 2015;5:2008–2011.

Kim, J.D.; Bae, J.H.; Kim, H.K.; Jeong, D.H. Droplet-born Air Blowing(DAB) technology for the industrialization of dissolving microneedle. In Proceedings of the World Congress on Recent Advances in Nanotechnology, Prague, Czech Republic, 1–2 April 2016.

Huh, I.; Kim, S.; Yang, H.; Jang, M.; Kang, G.; Jung, H. Effects of two droplet-based dissolving microneedle manufacturing methods on the activity of encapsulated epidermal growth factor and ascorbic acid. Eur. J. Pharm. Sci. 2018, 114, 285–292.

Ita, K. Transdermal delivery of drugs with microneedles: Strategies and outcomes. J. Drug Deliv. Sci. Technol. 2015, 29, 16–23.

Duarah, S.; Sharma, M.; Wen, J. European Journal of Pharmaceutics and Biopharmaceutics Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population. Eur. J. Pharm. Biopharm. 2019, 136, 48–69.

Caudill, C.L.; Perry, J.L.; Tian, S.; Luft, J.C. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J. Control. Release 2018, 284, 122–132.

Lim, D.J.; Vines, J.B.; Park, H.; Lee, S.H. Microneedles: A versatile strategy for transdermal delivery of biological molecules. Int. J. Biol. Macromol. 2018, 110, 30–38.

McGrath, M.G.; Vrdoljak, A.; O’Mahony, C.; Oliveira, J.C.; Moore, A.C.; Crean, A.M. Determination of parameters for successful spray coating of silicon microneedle arrays. Int. J. Pharm. 2011, 415, 140–149.

Nikolaou, M.; Krasia-Christoforou, T. Electrohydrodynamic methods for the development of pulmonary drug delivery systems. Eur. J. Pharm. Sci. 2018, 113, 29–40.

Bilal M, Mehmood S, Raza A, Hayat U, Rasheed T, Iqbal H: Microneedles in smart drug delivery. Adv Wound Care 2020;9:1–47

Martanto W, Moore JS, Kashlan O, Kamath R, Wang PM, O’Neal JM, Prausnitz MR (2006) Microinfusion using hollow microneedles. Pharm Res 23:104–113

Li J, Liu B, Zhou Y, et al.: Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS One 2017;12: 1–15.

Mukaibo H, Johnson EA, Mira F, et al.: Template-synthesized gold microneedle arrays for gene delivery to the Chlamydomonas reinhardtii chloroplast. Mater Lett 2015;141:76–78.

K. Lee, C.Y. Lee, H. Jung, Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose, Biomaterials, 32 (11) (2011), pp. 3134-3140

C.J. Martin, C.J. Allender, K.R. Brain, A. Morrissey, J.C. Birchall, Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications, J. Control. Release, 158 (1) (2012), pp. 93-101

T. Miyano, Y. Tobinaga, T. Kanno, Y. Matsuzaki, H. Takeda, M. Wakui, K. Hanada, Sugar micro needles as transdermic drug delivery system, Biomed. Microdevices, 7 (3) (2005), pp. 185-188

E. Larrañeta, R.E.M. Lutton, A.D. Woolfson, R.F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development, Mater. Sci. Eng. R Rep., 104 (2016), pp. 1-32

B. Pamornpathomkul, N. Niyomtham, B.E. Yingyongnarongkul, C. Prasitpuriprecha, T. Rojanarata, T. Ngawhirunpat, P. Opanasopit Cationic niosomes for enhanced skin immunization of plasmid DNA-encoding ovalbumin via hollow microneedles AAPS PharmSciTech, 19 (1) (2018), pp. 481-488.

S.D. Gittard, R.J. Narayan, C. Jin, A. Ovsianikov, B.N. Chichkov, N.A. Monteiro-Riviere, S. Stafslien, B. Chisholm Pulsed laser deposition of antimicrobial silver coating on ormocer® microneedles Biofabrication, 1 (4) (2009), p. 41001

K. Cheung, D.B. Das, Microneedles for drug delivery: trends and progress, Drug Deliv., 23 (7) (2016), pp. 2338-2354

B. Chen, J. Wei, F. Tay, Y. Wong, C. Iliescu, Silicon Microneedle array with biodegradable tips for transdermal drug delivery, Microsyst. Technol., 14 (7) (2008), pp. 1015-1019

C. O’Mahony, Structural characterization and in-vivo reliability evaluation of silicon microneedles, Biomed. Microdevices, 16 (3) (2014), pp. 333-343

C. Uppuluri, A.S. Shaik, T. Han, A. Nayak, K.J. Nair, B.R. Whiteside, B.N. Nalluri, D.B. Das, Effect of microneedle type on transdermal permeation of rizatriptan, AAPS PharmSciTech, 18 (5) (2017), pp. 1495-1506.

H.S. Gill, D.D. Denson, B.A. Burris, M.R. Prausnitz, Effect of microneedle design on pain in human subjects, Clin. J. Pain, 24 (7) (2008), pp. 585-594

J.A. Mikszta, J.B. Alarcon, J.M. Brittingham, D.E. Sutter, R.J. Pettis, N.G. Harvey, Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery, Nat. Med., 8 (4) (2002), pp. 415-419

M.J. Mistilis, A.S. Bommarius, M.R. Prausnitz, Development of a thermostable microneedle patch for influenza vaccination, J. Pharm. Sci., 104 (2) (2015), pp. 740-749

N. Ogai, I. Nonaka, Y. Toda, T. Ono, S. Minegishi, A. Inou, M. Hachiya, H. Fukamizu, Enhanced immunity in intradermal vaccination by novel hollow microneedles, Ski. Res. Technol., 24 (2018), pp. 630-635, 10.1111/srt.12576

A.M. Rodgers, A.J. Courtenay, R.F. Donnelly, Dissolving microneedles for intradermal vaccination: manufacture, formulation, and stakeholder considerations, Expert Opin. Drug Deliv. (2018), pp. 1-5

H.R. Jeong, J.Y. Kim, S.N. Kim, J.H. Park Local dermal delivery of cyclosporin A, a hydrophobic and high molecular weight drug, using dissolving microneedles Eur. J. Pharm. Biopharm., 127 (2018), pp. 237-243

S. Liu, D. Yeo, C. Wiraja, H.L. Tey, M. Mrksich, C. Xu Peptide delivery with poly(ethylene glycol) diacrylate microneedles through swelling effect Bioeng. Transl. Med., 2 (3) (2017), pp. 258-267

W. Lin, M. Cormier, A. Samiee, A. Griffin, B. Johnson, C.L. Teng, G.E. Hardee, P.E. Daddona, Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology, Pharm. Res., 18 (12) (2001), pp. 1789-1793

C. Wang, Y. Ye, G.M. Hochu, H. Sadeghifar, Z. Gu, Enhanced Cancer immunotherapy by microneedle patch-assisted delivery of Anti-PD1 antibody, Nano Lett., 16 (4) (2016), pp. 2334-2340

Y.W. Naguib, A. Kumar, Z. Cui ,The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil, Acta Pharm. Sin. B, 4 (1) (2014), pp. 94-99

S. Bhatnagar, P. Kumari, S.P. Pattarabhiran, V.V.K. Venuganti, Zein microneedles for localized delivery of chemotherapeutic agents to treat breast Cancer: drug loading, release behavior, and skin permeation studies, AAPS PharmSciTech, 19 (4) (2018), pp. 1818-1826

Y. Ye, C. Wang, X. Zhang, Q. Hu, Y. Zhang, Q. Liu, D. Wen, J. Milligan, A. Bellotti, L. Huang, G. Dotti, Z. Gu, A melanin-mediated cancer immunotherapy patch, Sci. Immunol., 2 (17) (2017), p. 5692.

G. Serrano, P. Almudever, J.M. Serrano, J. Cortijo, C. Faus, M. Reyes, I. Exposito, A. Torrens, F. Millan, Microneedling dilates the follicular infundibulum and increases transfollicular absorption of liposomal sepia melanin, Clin. Cosmet. Investig. Dermatol., 8 (2015), pp. 313-318

Y.H. Mohammed, M. Yamada, L.L. Lin, J.E. Grice, M.S. Roberts, A.P. Raphael, H.A. Benson, T.W. Prow, Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin, PLoS One, 9 (7) (2014), p. e101956.

S.H. Baek, J.H. Shin, Y.C. Kim, Drug-coated microneedles for rapid and painless local anesthesia, Biomed. Microdevices, 19 (1) (2017), p. 2

Griffin P, Elliott S, Krauer K, Davies C, Rachel Skinner S, Anderson CD, Forster A, Safety, acceptability and tolerability of uncoated and excipient-coated high density silicon micro-projection array patches in human subjects. Vaccine 35:6676–6684

Rouphael NG, Paine M, Mosley R, Henry S, McAllister DV, Kalluri H, Pewin W, Frew PM, Yu T, Thornburg NJ, Kabbani S, Lai L, Vassilieva EV, Skountzou I, Compans RW, Mulligan MJ, Prausnitz MR, TIV-MNP 2015 Study Group (2017) The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 390:649–658

Petukhova TA, Hassoun LA, Foolad N, Barath M, Sivamani RK (2017) Effect of Expedited Microneedle-Assisted Photodynamic Therapy for Field Treatment of Actinic Keratoses: A Randomized Clinical Trial. JAMA Dermatol 153:637–643

Arya J, Henry S, Kalluri H, McAllister DV, Pewin WP, Prausnitz MR (2017) Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials 128:1–7

Ono A, Azukizawa H, Ito S, Nakamura Y, Asada H, Quan YS, Kamiyama F, Katayama I, Hirobe S, Okada N (2017) Development of novel double-decker microneedle patches for transcutaneous vaccine delivery. Int J Pharm 532:374–383

Fernando GJP, Hickling J, Jayashi Flores CM, Griffin P, Anderson CD, Skinner SR, Davies C, Witham K, Pryor M, Bodle J, Rockman S, Frazer IH, Forster AH (2018) Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch). Vaccine 36:3779–3788

Spierings EL, Brandes JL, Kudrow DB, Weintraub J, Schmidt PC, Kellerman DJ, Tepper SJ (2018) Randomized, double-blind, placebo-controlled, parallel-group, multi-center study of the safety and efficacy of ADAM zolmitriptan for the acute treatment of migraine. Cephalalgia 38:215–224

Zheng Z, Diaz-Arévalo D, Guan H, Zeng M (2018) Noninvasive vaccination against infectious diseases. Hum Vaccin Immunother 14:1717–1733

Lee JH, Jung YS, Kim GM, Bae JM (2018) A hyaluronic acid-based microneedle patch to treat psoriatic plaques: a pilot open trial. Br J Dermatol 178:e24–e25

Akilov O, McCann S, Erdos G, Falo LD (2018) Phase 1, single-arm, open-label, dose escalation trial of microneedle array-doxorubicin in patients with mycosis fungoides. Eur J Cancer 101:S32

Ryu HR, Jeong HR, Seon-Woo HS, Kim JS, Lee SK, Kim HJ, Baek JO, Park JH, Roh JY (2018) Efficacy of a bleomycin microneedle patch for the treatment of warts. Drug Deliv Transl Res 8:273–280

Tan CWX, Tan WD, Srivastava R, Yow AP, Wong DWK, Tey HL (2019) Dissolving triamcinolone-embedded microneedles for the treatment of keloids: A single-blinded intra-individual controlled clinical trial. Dermatol Ther (Heidelb) 9:601–611

Yang H, Kim S, Jang M, Kim H, Lee S, Kim Y, Eom YA, Kang G, Chiang L, Baek JH, Ryu JH, Lee YE, Koh J, Jung H (2019) Two-phase delivery using a horse oil and adenosine-loaded dissolving microneedle patch for skin barrier restoration, moisturization, and wrinkle improvement. J Cosmet Dermatol 18:936–943

Kang G, Kim S, Yang H, Jang M, Chiang L, Baek JH, Ryu JH, Choi GW, Jung H (2019) Combinatorial application of dissolving microneedle patch and cream for improvement of skin wrinkles, dermal density, elasticity, and hydration. J Cosmet Dermatol 18:1083–1091

Avcil M, Akman G, Klokkers J, Jeong D, Çelik A (2020) Efficacy of bioactive peptides loaded on hyaluronic acid microneedle patches: A monocentric clinical study. J Cosmet Dermatol 19:328–337.

Patel, J., Parikh, S., Patel, R., & Patel, S. (2021). Art of designing a novel drug formulation with patient in mind: unengaged with patients could be fatal for winning business strategy. The Journal of Pharmaceutical Sciences and Medicinal Research, 1(01), 055–058. https://doi.org/10.53049/tjopam.2021.v001i01.005

Jayendrakumar Patel, Shwetaben Patel, Major Obstacles in Technology Transfer of Nanomedicine from Conception to Commercialization, International Journal of Pharmaceutical Research and Applications, Volume 5, Issue 2, pp: 333-342, DOI: 10.35629/7781-0502333342.

Patel, J., Parikh, S., Patel, S., Patel, R., & Patel, P. (2021). Carbon Nanotube (CNTs): Structure, Synthesis, Purification, Functionalisation, Pharmacology, Toxicology, Biodegradation and Application as Nanomedicine and Biosensor: Carbon Nanotube (CNTs). The Journal of Pharmaceutical Sciences and Medicinal Research, 1(02), 017–044. https://doi.org/10.53049/tjopam.2021.v001i02.008



How to Cite

Patel, J., Parikh, S., Patel, S., Patel, R., Patel, P., & Bhavsar, B. (2021). Microneedles (MNs) - A versatile transdermal drug delivery system: Types, Fabrication Methodology, Release Mechanism, Evaluation Parameters, Biological Application and Clinical Case Studies: Microneedles (MNs) - A versatile transdermal drug delivery system. The Journal of Pharmaceutical Sciences and Medicinal Research, 1(03), 001–044. https://doi.org/10.53049/tjopam.2021.v001i03.010




Most read articles by the same author(s)